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A class of numerical dissipation models for central-difference 
schemes constructed with second- and fourth-difference terms is 
considered. The notion of matrix dissipation associated with upwind 
schemes is used to establish improved shock capturing capability for 
these models. In addition, conditions are given that guarantee that such 
dissipation models produce a TVD scheme. Appropriate switches for 
this type of model to ensure satisfaction of the TVD property are 
presented. Significant improvements in the accuracy of a central- 
difference scheme are demonstrated by computing both inviscid and 
viscous transonic airfoil flows. 0 1992 Academic Press. Inc. 

I. INTRODUCTION 

Central-difference-type schemes are currently being 
applied on a regular basis in the solution of the Euler and 
Navier-Stokes equations. A numerical dissipation model is 
included in these schemes, and it plays a crucial role in the 
determination of their success. The form of the dissipation 
model is quite often a blending of second-difference and 
fourth-difference dissipation terms. The second-difference 
terms are used to prevent oscillations at shock waves, while 
the fourth-difference terms are important for stability ahd 
convergence to a steady state. There is a constant to be 
specified for each contribution. However, using the model in 
conjunction with appropriate numerical procedures, these 
constants can usually be selected and maintained for a fairly 
wide class of fluid dynamics problems. This dissipation 
model allows shock waves to be captured with smearing 
over three to four mesh cells. 

Even though, these central-difference schemes have 
proven to be reasonably effective in many cases, there are 
still strong motivations for reducing the numerical dissipa- 
tion being produced. For example, by appropriate reduc- 
tion of the artilicial dissipation, shock wave representation 

and boundary-layer definition (especially the wall shear 
stresses) can be improved on coarse meshes. Such 
improvements in accuracy are especially beneficial for com- 
plex three-dimensional flows, which can demand extensive 
computational effort. In addition, better estimates of the 
limit of infinitely line mesh values of aerodynamic coef- 
ficients for flows with shocks can be obtained. Also, the 
standard model has difficulties in hypersonic flow. Finally, 
for some problems, the influence of numerical dissipation 
needs to be severely limited in certain smooth regions of a 
flow field (i.e., near the trailing edge of an airfoil), while still 
maintaining stability near discontinuities. This difficulty 
cannot generally be resolved by simply reducing the global 
constants in the dissipation model. 

One can appeal to ideas from upwind schemes to improve 
the dissipation model, especially in the vicinity of shock 
waves. Upwind algorithms utilize concepts from charac- 
teristic theory in order to determine the direction of spatial 
differencing. They have been extended to systems of conser- 
vation laws using such approaches as the flux-vector split- 
ting of van Leer [ 1 ] and the approximate Riemann solver 
of Roe [2]. A fundamental feature of these schemes is the 
use of a matrix evaluation of the dissipation either in the 
implied or direct sense. In so doing, the dissipative terms of 
each discrete equation are scaled by the appropriate eigen- 
values of the flux Jacobian matrices of the Euler equations, 
rather than the same eigenvalue as in the dissipation model 
employed with central-difference schemes. Also, upwind 
schemes can be designed to have the total variation 
diminishing (TVD) property, which prevents the 
occurrence of spurious oscillations. The disadvantage of 
these schemes is that, in general, they increase the operation 
count for processing mesh points by about a factor of two 
over that required by central-difference schemes. One would 
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certainly like to more closely imitate the highly desirable 
behavior of the upwind algorithms near flow discon- 
tinuities, and at the same time, retain the more efficient 
central-difference scheme over significant portions of a flow 
field. In addition, one would like to have the high degree of 
numerical efficiency that has been achieved by combining 
a central-difference scheme with a Runge-Kutta time- 
marching algorithm, which includes residual smoothing and 
multigrid acceleration techniques. 

The primary purpose of this paper is to construct a 
numerical dissipation model for a central-difference scheme 
that has both the properties of matrix dissipation and of 
TVD. As a starting point, we consider the elements of a 
widely used scalar dissipation model. Modifications of this 
model that facilitate accurate viscous flow computations are 
also examined. In the next section of the paper, the intimate 
connection between the formulation for an upwind scheme 
and a centered-difference scheme is presented, so as to 
establish a foundation for a matrix dissipation model. Then 
a theorem is proved that provides a simple sufficient condi- 
tion to determine when a central-difference scheme with 
dissipation terms comprised of second and fourth differences 
is TVD. In the following section, appropriate flux limiter 
functions consistent with the central-difference dissipation 
model are discussed. A multistage time-stepping scheme 
used in applications is next briefly described. Finally, 
numerical results are shown to demonstrate the benefits of 
using the matrix dissipation model. Both inviscid and 
viscous transonic airfoil flows are computed. 

II. SCALAR DISSIPATION MODEL 

The basic elements of the scalar dissipation model 
considered in this paper were first introduced by Jameson, 
Schmidt, and Turkel [3] in conjunction with Runge-Kutta 
explicit schemes. This dissipation model has been used by 
many investigators [46] to numerically solve the Euler 
equations for a wide range of fluid dynamic applications. 
The same type of dissipation model has been applied to 
alternating direction implicit (ADI) schemes [7] and LU 
factored implicit schemes [S]. Several modifications of the 
model have been investigated in [9] and [lo] in order to 
improve it and make it suitable for obtaining accurate and 
efficient solutions of the Navier-Stokes equations. In this 
section, the basic model and important modifications are 
briefly reviewed. 

Consider the Euler equations in the form 

W,+fx+g,=O, (2-l 1 

where W is the four-component vector of conserved 
variables, and f, g are the flux vectors. The independent 
variables are time r and Cartesian coordinates (x, y). If 

581/101/2-5 

(2.1) is transformed to arbitrary curvilinear coordinates 
t = <(x, y) and 9 = ~(x, y), then we obtain 

(Jp’W),+Ft+G,=O, (2.2) 

where J-’ is the inverse transformation Jacobian, and 

F=f.k-gx,, G=gx,-fy,. 

In a cell-centered, finite-volume method, (2.2) is integrated 
over an elemental volume in the discretized computational 
domain, and J-’ is identified as the volume of the cell. 
Equation (2.2), assuming J-r is independent of time, can 
also be written as 

J-‘W,+AW<+BW,,=O, 

where A and B are the flux Jacobian matrices defined by 
A = al;/a w and B = aqa w. 

To advance the scheme in time we use a multistage 
scheme. A typical step of a Runge-Kutta approximation to 
(2.2) is 

W(k) = W(o) _ Glk km [D$(k- 1) 
J-l 

+D,G+‘)-AD], 

(2.3) 

where D, and D, are spatial differencing operators, and AD 
represents the artificial dissipation terms. The dissipation 
terms are a blending of second and fourth differences. That 
is, 

where 

AD=(D;+D;-D;-D;)W, (2.4) 

0: W=V,C(li+ 1/2,jEi2,)1/2,,) AtI Wi,j, (2.5) 

DtW=VSC(‘i+,/2,jE14,)1,2,j) A<V,A,l f+‘z,Jy (2.6) 

and A,, V, are the standard forward and backward 
difference operators, respectively, associated with the 5 
direction. The variable scaling factor i was originally 
chosen as 

li+ l/2, j = ~lI(n,)i,j+(n()i+l,j + (Aq)<,~ + CJbq)i+ 1, jl3 (2.7) 

where ;li; and I, are proportional to the largest eigenvalues 
of the matrices A and B. The spectral radii Ae and 1, are 
given by 
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where u and u are the Cartesian velocity components, and ( 
is the speed of sound. The coefficients E(” and E(~) are 
adapted to the flow and are defined as 

&!2’ i+1 2.1 = ti(“max(r, ,,,, \I~.,, r,+l,,. rr+Z,,), (2.8) 

v - Pi+ I.;-2Pt,j+ PI I.; 
I_ , - 

Pi+I.,+2Pi..,+PiLl., ’ 
(2.9) 

(2.10) 

where p is the pressure, and the quantities K(*) and rcc4) are 
constants to be specified. The operators in (2.4) for the q 
direction are defined in a similar manner. 

The second-difference dissipation term is nonlinear. Its 
purpose is to introduce an entropy-like condition and to 
suppress oscillations in the neighborhood of shocks. This 
term is small in the smooth portion of the flow field. The 
fourth-difference dissipation term is basically linear and is 
included to damp high-frequency modes and allow the 
scheme to approach a steady state. Only this term affects the 
linear stability of the scheme. Near shocks it is reduced to 
zero. 

The isotropic scaling factor of the original dissipation 
model as given in (2.7) is generally satisfactory for inviscid 
flow problems when typical inviscid flow meshes (i.e., cell 
aspect ratio 0( 1)) are used. The factor can produce too 
much numerical dissipation in the cases of meshes with high 
aspect ratio cells. This is also an important consideration 
for high Reynolds number viscous flows, where a mesh 
providing appropriate spatial resolution can have cell aspect 
ratios 0(103). In [9] and [lo] this difficulty is remedied 
by replacing the factor of (2.7) with the anisotropic one 

1, ‘,+,~2,,=f[(~~)I.,+(~S)i+lr;ll 

where 

(A:)L,= @,,j(rNJ-<)i, j3 

4,,,(r)= 1 +rij, O<[<l, 

and r = /1,/i,. In the normal direction, one defines 

Alternatives to the switching function presented in (2.9) 
have been investigated. Caution must be exercised in the 
selection of a switching variable. If a quantity with the same 
functional dependence as entropy (i.e., p/p’) is used, sharper 
shocks can be captured in viscous transonic flows. However, 
such a choice can result in a loss of accuracy for the surface 
shear stress, due to the significant variation in the entropy- 
type variable across the boundary layer. This difficulty can 

be removed by simply multiplying the scaling factor by a 
function of the local Mach number of the flow. An accept- 
able modifying function has proven to be (M,/M,,,)“. for 
some fi 3 1, where M, is the local Mach number and ~211,~~ 
is a reference Mach number (i.e., free-stream value for exter- 
nal flows). Typically the parameter /? is 1 or 2. It is impor- 
tant to note that the entropy-type function is generally not 
satisfactory for inviscid flows. In addition, one can consider 
the sum of two switches. one depending on pressure and the 
other on temperature, so that all thermodynamic changes 
are taken into account. When introducing the matrix- 
valued dissipation it will be possible to use separate switches 
for different characteristic variables. 

The treatment of the artificial dissipation must be 
modified at the boundaries of the physical domain. In the 
case of the fourth-difference dissipation the standard five 
point difference stencil must be replaced at the first two 
interior mesh cells. This means that one-sided or one-sided 
biased stencils are used at these cells. The dissipative charac- 
ter of the artificial terms is important because it influences 
both stability and accuracy. For example, if the dissipation 
is too large at a solid boundary, an artificial boundary layer 
is created in an inviscid flow. and the effective Reynolds 
number of a viscous flow is altered. To improve accuracy at 
the wall boundaries of viscous flows, where gradients are 
steep due to physical boundary layers, the usual fourth- 
difference stencils are changed in this dissipation model. 

Let the total dissipation for a mesh cell, in the direction 
represented by the index,j, be denoted by d,. For simplicity 
assume that E,c’~’ = 1. Then, 

d, = 4; + , ,z - df, 1 2. 

where the dissipative flux 

df+ 1/2 = (dw),+3/2-2(4 w)j+ Ii2 + Cdw),- 12 

and thus 

dj = (A Wi+ 312 - 3(4 W)i+ 1;2 

+ 3(6 w)j- l/2 - td w),- 3/2? (2.11) 

with the index i for d W suppressed for convenience. 
Consider the first two interior cells adjacent to a solid 
boundary, as depicted in Fig. 1. If 

cd w)1,12 = cd w)3, = td w)5/'2 

then (2.11) gives 

d,= W,-2W,i- W, 

d,= W,-4W4$5W3-2W2. 

(2.12) 

(2.13) 

(2.14) 
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j = 312 

FIG. 1. Boundary point dissipation. 

These boundary stencils are fairly standard ones, and they 
result in a nonpositive definite dissipation matrix for the 
system of difference equations [7]. An alternative form, 
which has reduced the sensitivity to solid surface normal 
mesh spacing for turbulent flow calculations without 
compromising stability or convergence, is given by 

(A w,,o = 34 WA,2 - (A w5,2 (2.15) 

with a constant. The first-order upwind scheme can be 
written as 

a<0 
a >O, (3.1) 

where all discrete quantities are evaluated at time level n At 
unless otherwise denoted. The scheme of (3.1) can be 
rewritten as 

At 
u:+‘=z4,-a-(~,+, 

2Ax 
- uj-, 1 

+lUl~(U,,,-2Uj+Ui~,), (3.2) 

which now contains a central-difference term and a second- 
difference dissipation term. Now consider the system 

u, + Au, = 0, (3.3) 

where u is a N-component vector. The system case can be 
converted to a scalar one by diagonalizing the N x N matrix 
A with a similarity transformation 

and 
A = T -‘AT, 

d,= Wq-3W3+3Wz- W,, (2.16) 

d,= W,-4W,+6W,-4W,+ W,. (2.17) 

This boundary condition is advantageous if the mesh is fine 
enough to adequately represent the laminar sublayer region 
of the boundary layer (i.e., at least two mesh points are 
inside the sublayer). For coarse meshes this treatment can 
be less accurate than the zeroth-order extrapolation 
of (2.12). 

where the columns of Tare the right eigenvectors of A. After 
diagonalizing (3.3) and applying the scheme of (3.2) the 
first-order upwind scheme is given by 

+ IAl & Cur+ 1-2~, + ui- I), (3.4) 

where 
III. THE UPWIND CONNECTION 

IAl = T IAl Tp’, /i=Diag[li,I.../,I,j]. 
Upwind schemes for solving hyperbolic systems of 

conservation laws (i.e., Euler equations of gas dynamics) 
rely upon characteristic theory to determine the direction 
of propagation of information, and thus, the direction 
required for one-sided differencing approximations of the 
spatial derivatives. With such schemes shock waves can be 
captured without oscillations. Thus, a successful artificial 
dissipation model for a central-difference scheme should 
imitate an upwind scheme in the neighborhood of shocks. 
We now review the connection between these two types of 
schemes. 

Consider the one-dimensional scalar wave equation 

The generalization to a system of conservation laws is 
straightforward; namely, 

withfbeing a N-component flux vector, and 

+& CIAi+1/21 (~i+l-~i) 

24, + au, = 0 - IA,-,,,I (ui-ui-,)I, (3.5) 
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where the Jacobian matrix A = @/au, and IAl is defined as 
for (3.4). The matrix IA i+ I,Z 1 can be computed as an 
arithmetic average or a Roe average. For transonic steady 
flows the differences are negligible; therefore, we use the 
simpler arithmetic average. For hypersonic flows Yee [ 111 
found that the Roe average yields better results. For time- 
dependent problems the Roe average also seems to give 
slightly better results. 

IV. MATRIX DISSIPATION MODEL 

We now extend the scheme given in (3.5) to the 
two-dimensional equations of fluid dynamics. In particular, 
consider the transformed Euler equations of (2.2) with the 
Runge-Kutta scheme of (2.3). The necessary modification 
to the contributions for the 5 direction of the artificial 
dissipation term defined by (2.4) is to substitute IAl for the 
eigenvalue scaling factor, 1, in (2.5) and (2.6). For the q 
direction, 5 and IAl are replaced by n and IBl, respectively. 
We next define explicitly the form for the matrix IAl. Let 

with 

%l=q+JqT&, %2 = q - di c, 

h=q, a, = J-ltx, 

a,= Jpl[\;, q=a,u+a,v. 

Then 

x CEs+(~-l)&l, 

where 

E,= 

-4 a1 a2 0 

-" "' ua2 -219 vu, va, 0 1 0 ’ 
L-Hq Ha, Ha, O] 

ro 0 0 o- 

E4= Il; 

L 

--a1u --a10 a1 

2 -a2u -a227 a, 

44 -9u -P 4. 

His the total enthalpy, and 4 = (u2 + v2)/2. Note the special 
form of IAl, where each row of E, is a scalar times the first 
row or a scalar times the second row when the first row con- 
tains only zeros. Because of this special form for any i,, , 1,, 
and A,, an arbitrary vector x can be multiplied by IA 1 very 
quickly. That is, we calculate IAi + 1,,2 1 (ui+ I - ui) directly 
(see [ 121) rather than calculate [Ai+ 1,2 / and multiply a 
matrix times a vector. The matrix IBI is computed in the 
same way as IAl by simply replacing 5 with il. 

In practice one cannot choose Al, A,, I, as given above. 
Near stagnation points jL3 approaches zero while near sonic 
lines je1 or I, approach zero. A zero artificial viscosity would 
create numerical difficulties, such as the appearance of 
nonlinear instabilities. Hence. we limit these values as 

IT I =max(IA, I, V,p(A)), 

P(A) = I41 + c &f-G% 

I& I = max(lh I, ~,p(A)), 

where the linear eigenvalue & can be limited differently than 
the nonlinear eigenvalues. The parameters I’, and 1/[ have 
been determined numerically. Various values have been 
evaluated by comparing their corresponding computed 
solutions on the basis of the following: (1) sharpness of 
shock waves captured (without producing oscillations) and 
(2) convergence rate of numerical scheme. A good choice for 
V, and V, is between 0.2 and 0.3. 

We have thus far replaced &+1,2,j in (2.5) and (2.6) by a 
matrix while leaving the limiters .sC2) and sC4) as scalars. One 
can also introduce E(~) and sC4) into the diagonal matrix /i. 
This allows different limiters to be chosen for different 
characteristic variables. For example, the limiter may be 
based on pressure for the nonlinear waves. However, the 
pressure is smooth through a contact discontinuity. Hence, 
a switch based on temperature may be more appropriate for 
the linear wave. One could also use different mesh scalings, 
b(r), for the linear and nonlinear waves. Also, a smoother 
cutoff [ 131 can be introduced. 
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V. THE TVD PROPERTY 

Consider the one-dimensional scalar conservation law 

; [4x, ?)I + & lx44 ?))I = 0, (5.1) 

where 

--co<x<oo, t 3 0. 

Let u(t) = (oi(t)} be the approximate solution of (5.1) and 
consider the semidiscrete equation 

with 

Au;, 10 = (Au)i+ 1/2 = u;+ l(t) - u,(t); 

A3 is a third-difference operator defined as 

A3ui+ I/Z= (A3u)i+ l/2 

The terms on the right hand side of (5.2) represent second- 
and fourth-difference numerical dissipation terms, with rcc4) 
a constant. Define 

si+ l/2 = w(Au,+ 1j2)y 

where sgn represents the Signum function. Then, a 
modification of the theorem of Tadmor [ 141 is given by the 
following. 

THEOREM. The semidiscrete scheme of (5.2) is TVD if 

(4 [2-~i+l,2(Si~1/2+~;+3,2)1 Q,+,,, 
Afi + 112 

~si+l/2(si+3/2-si-11/2)p 
Aui+ 112 

and 

(b) Ri+ l/2=0 when si + 3/2 - 2si+ 112 + sip 112 # 0. 

Proof Shifting the indices by one in (5.2) and sub- 
tracting (5.2) from the resulting equation, we obtain 

%Aui+ l/2 +& CAfi+3,2-Afi~wl 

=& lIQ;+3/2AUi+3/2 

- 2Q;+ 1/z Aui, 1/2 + Qi- 1/2 Aui- ~21 

-2Ri+ I/Z A3ui+ I/Z + Ri- 112 

Multiply (5.3) by si+ 1,2 and sum over 
si+ l/2 = f 1, so s’+ 1,2 = 1, and 

d3u I- I/21. (5.3) 

all i. Note that 

si+ l/2 Au,+ l/2 = lAoi+ 1/2 I. 

We then obtain 

$8 Wi+l,,I = - ~~si+l,2(s,~1,2-si+3,2) 
I I 

Afi + 112 
Xp IAUi+l/2/ 

Aui + I/Z 

-~~~si+3/2-2si+l/2+si-l~2) 
I 

XR~+IIZA~U~+I/~. (5.4) 

We stress that the last term in (5.4) will not help for TVD. 
Its purpose is to eliminate high frequencies and accelerate 
convergence to a steady state. Hence, we want this 
contribution to be zero. This can be accomplished if we 
demand either 

Si+3/2-2Si+l/2+S,~l/2=o (5.5) 
or 

Ri + 112 = 0, (5.6) 

i.e., condition (b). We are left with 

$ (TV)= -AC [ -si+l/2(si+3/2-si-l1/2) 
I 

Afi+ 112 
x~-si+lj2(si+3/2-2si+1/2+si~1/2) 

AUi+ l/2 

X Qi+ 112 1 IAuz+ I/Z 13 (5.7) 



298 SWANSON AND TURKEL 

where TV denotes the total variation as given by 

Thus, a sufficient but not necessary condition that the total 
variation not increase is that the term of (5.7) in brackets 
must be positive. This means that 

-s~+,;z(s~+~!~-~s,+I/z+s, 112) Q,+l 2 

Since s,‘+ 1,2 = 1, (5.8) is equivalent to condition (a) of the 
theorem. Defining 

Xl = 1 -sip 1;2si+ 112, 

(5.8) can be written in the form given by Tadmor; namely, 

Af; + 112 
(x, + Xi+ 1) Qi+ I/Z 2 (xi-x,+ 1) do. 

,+ 1.2 

Several remarks concerning this theorem are in order. 

Remarks. (i) When no extrema are present locally 
(Si-1/2=~i+1/2=~i+3/2 ), both conditions of the theorem are 
trivially satisfied for all Qi + ,,2 and Ri+ ,,2. For such regions 
we want Q,+,!, = @Ax) for second-order accuracy and 
Ri+ l/2 to be chosen so that high frequencies are damped. 

(ii) If si- ,,2 =s I + 312 = -sit iI (a local oscillation at 
xi+ 1,2), we require 

(iii) If si-1/2=sz+l/2= -si+3/2 (a local extremum at 
x 1 ICI 9 

Q,+l:23 ;:7+1’2, Ri, ,i2 = 0. 
r+li2 

(iv) If siPIj2= -s,+,,~= -s;+~,~ (a local extremum 
at x,), 

Qi+l/22%, R;+1/2=0. 
I + 112 

It follows from these inequalities that Qi+ ,,2 can 
sometimes be negative. As fas as total variation is concerned, 
central differences are not nondissipative. That is, they 
sometimes increase and sometimes decrease the total varia- 
tion. In cases where central differences decrease the total 
variation, Qi+ 1,2 can be negative. For systems of equations, 

especially in multidimensions, this behavior can sometimes 
lead to difficulties. Hence, we demand the stronger condi- 
tion that 

Q 
> 

‘+lsZ’ 

For systems this condition is replaced by 

Q ,+I;22 I‘4,+,,2l, 

where A = af/au, and the average at i + l/2 is constructed by 
the technique of Roe [2]. In practice, we find that one can 
use the simpler arithmetic average rather than the Roe type 
average. The arithmetic average is used in all numerical 
results of this paper. 

VI. FLUX LIMITERS 

In this section switching functions are introduced that 
force the scheme to automatically satisfy the inequalities 
presented in Section V. These switches are required to be 
smooth so that limit cycles are not experienced when 
marching in time to obtain a steady-state solution. The 
discrete switching functions are defined as 

Qi+1,2= ICI lai+ 1/2lr with O<$<l, 
(6.1) 

Ri+ 112 = r. la,, ,:2 I? 

where + = 1 near extrema, so that the inequalities are 
satisfied, and IJ = 0( Ax) in smooth regions of the flow field. 
Conservely, r= 0 at extrema, and r= 1 in the smooth 
regions. Here we define a;+ ,,2 = Afi+ ,,2/Avi+ ,,2. In the case 
of the fluid dynamic equations, a,, ,,2 becomes a matrix, 
and the switch is usually based on the pressure, though 
sometimes the temperature can also be used. 

The functions Ic/ and r of (6.1) can be defined in terms of 
a limiter function. Let 

vi-u; 1 Au._ li2 r=-=L 
vi+ 1 - 1’; Avi, 112’ 

The van Leer flux limiter is given by 

{ 

2r 
r+lrl - 1 +r’ 

r>O 
vi(r)=I+lyl= o 

3 r 6 0. 

From Sweby [ 151 it is straightforward to see that for any 
flux limiter 

Il/Ar) = 1 -v,(r). 



CENTRAL AND UPWIND SCHEMES 299 

Since we want $,(r) to be positive, this relation is redefined 
as 

$i(f-) = 11 - cp;(r)l. 

Then, for the van Leer limiter, 

s00dI//~bl anddefine 

rc/i+ l/2 =max(lCli, qi+ 1). 

We now show that the inequality (5.8) is satisfied with this 
I(/. By the first remark of Section V, the inequality is satisfied 
when s,_ ,/2 = s;, 1,2 = s, + 3,2, and so in this case we only 
need Q = O(dx). Since r > 0 in this case, 

In addition, for smooth regions of the flow field, 

r = 1 + O(dx), 

and thus 

* ,+1/2=O(dxh Q1+,:2=O(dx). 

Next, consider the case si- 1,2 = -s, + 1,2. This implies yi < 0, 
and so, ijj = 1. Moreover, 

Similarly, if s;+~,* = -si+ i12, 

s If 112 = -si+3,2 a $i+ I = 1 * $I+ l/2 = I. 

It also follows, using (6.1), that the inequalities in (ii) and 
(iii) of the remarks of Section V are satisfied. Also, for these 
two cases, setting Ti + ,,2 = 1 - $, + 1,2 guarantees that 
r; + ,,2 = 0. so 

r r+1j2= l-mN+i, $;+I). 

The flux limiters $ and r can be connected to those used in 
upwind schemes. Sweby [15] considers an upwind Lax- 
Wendroff scheme. In particular, for the one-dimensional 
wave equation 

U,+au*=O, 

the numerical solution is obtained with 

p’Pi(“z+l-ui) 3 
I 

(6.2) 

where 

v=u-g, O<cp(r)<& cp(r)=q ! , 
r 0 r 

and the backward difference operator A is defined by 

If (6.2) is rewritten as a central-difference scheme, then 

u~)-(Pi- lC”ibui- ,)I. (6.3) 

By dropping the v2 term in (6.3) and changing to a 
semidiscrete formulation, we get 

d 
-uj= -qu;+, 
dt 2At -ui- 1) 

If 

then the second-difference dissipation term has the same 
form as the one presented in Section V. 

To complete the connection between the limiters for the 
central-difference and upwind schemes, we compare their 
behavior. For the central-difference case, 

whereas for the upwind case, 0 < cp < 2. Furthermore, for 
the central-difference limiter, 

1 4 = *(r), r cp k =dr) 
0 
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FIG. 2. Sweby diagram. 

means that it does not matter if Au,+,,,>~u,~ ,,* or 
AU{+ 1p < AUi- I/z (i.e., the sign of a does not affect the 
scheme), as opposed to the upwind limiter where 

cp@Lcp 1 
r 0 r 

In Fig. 2 the Sweby diagram for the upwind van Leer flux 
limiter and the central-difference van Leer flux limiter is 
shown. For r < 1, the limiters are the same. For r > 1, the 
upwind version continues until cp = 2, while the central- 
difference version returns to zero. In Sweby’s paper the flux 
limiters are not allowed to decrease when r > 1. However, 
there is no difficulty from such behavior. In both cases 
q(r) = 0 when r ~0 so that the limiter is turned off for 
extrema. We note that other limiters besides that of van 
Leer can be used to get switches for central-difference 
schemes. 

For systems of equations we use a scalar limiter (i.e., 
switching function). Using the matrix form of the dissipa- 
tion it is easy to implement different limiters for different 
characteristic variables. In the computations discussed later 
the switch is always based on pressure. 

In terms of the pressure the switch becomes 

l-r 
$i=- APi-,/, a,O 

1+ Irl’ r=Gl;z) 

or 

+= lPi+l-Pil -(Pi-pPi-I)Sgn(P,+1-Pi) 
I 

IPi+I-PiI+IPi-Pi-ll+E ’ 
a > 0, 

with 

*i+1/2= maX(lC/i, $i+ 11, 

and e = 0(Ax2) to prevent a zero denominator for constant 
pressure regions. Consider also the wave speed a < 0. T‘hen. 

$I= lPi+, 
P,+,-Q,+p, 1 
-P,l+IP,-P, ,/+c 

x sdp,+ I -P,), 
i 

(I>0 

w(p, 1 - PA u < 0. 

We use a conservative approach and take 

IPi+, 
+j= lP,+, 

-2pi+Pi-l/ 
- Pil + IPi- P,- , I +c’ 

(6.4) 

There is difficulty in defining for this switching function a 
general E, i.e., one that does not activate the switch when 
small oscillations occur in the discrete field. Some flexibility 
can be obtained by considering the switching function 

-2Pi+ Pi-- 1 I 
~~=~(l_~~lifls:I,-P,l+lp,-pI~~l)j. (6.5) 

\ +dPi+, +2P,+P,-,) / 

where 0 < o < 1, and (6.4) is recovered when w + 1. In 
practice a reasonable value for w is i. Larger values of w do 
not prevent oscillations at high Mach numbers, and smaller 
values of w can prevent a multigrid scheme from con- 
verging. Then the E!?,,~., appearing in (2.5) is replaced by 
*i+l/Z,j. Note that this switch is very similar to (2.9) for the 
original dissipation model of the Runge-Kutta scheme. 
There is only a change in the denominator. However, with 
this change, o sufficiently small, and the factor 4 in front of 
the second-difference dissipation term, the scalar equation 
becomes first-order upwind near shocks. In the case of the 
original I,+~ we find that Gi= 0.05 near shock waves in 
transonic flows. One may require different parameters for 
the Runge-Kutta scheme to ensure stability. Extensions to 
other limiters and time-dependent problems are considered 
in [16]. 

We now no longer have a free parameter for the second- 
difference dissipation. The only free parameter is the 
coefficient IC(~) of the fourth-difference term. In the context 
of (5.2) and (6.1) one can define the function 
r= max[O, (1 - 21(/)], resulting in the fourth-difference 
dissipation being cut off for II, 3 4. In the case of the original 
dissipation formulation, one can simply replace ~i2+) ,!z,, 
appearing in (2.10) with Gj+ ,12.,. 

VII. NUMERICAL ALGORITHM 

The majority of the numerical results presented in this 
paper were obtained with a Navier-Stokes code developed 
by the authors, which is based on the explicit multistage 
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time-stepping schemes of [3] and [ 171. This class of 
schemes is currently in widespread use for solving the 
Euler equations. In references [18-211, these schemes 
were extended to allow solution of the compressible 
Navier-Stokes equations. Significant improvements in 
numerical efficiency were introduced in [9, 10, 221. In the 
code of Swanson and Turkel a cell-centered, finite-volume 
method is employed to obtain centered type difference 
approximations for the flow equations. The scheme is 
second-order accurate in space for sufficiently smooth 
meshes (see [22, 231 for definition of sufficiently smooth). 
A modified five stage Runge-Kutta scheme is used for the 
time integration to obtain a steady-state solution. There is 
a weighted evaluation of the artificial dissipation terms on 
the first, third, and fifth stages, which provides a large 
parabolic stability limit. The absolute stability curve for this 
scheme is shown in [lo], and the intersection of this curve 
with the negative real axis is - 9. The physical viscous terms 
are computed on the first stage only and frozen for the 
remaining ones; this does not compromise the stability 
characteristics of the scheme. The spatial and temporal 
differencing are decoupled. Thus, the numerical algorithm 
is independent of time step and amenable to steady-state 
convergence acceleration techniques. These methods include 
local time stepping (a preconditioning for the system of 
difference equations), variable coefficient implicit residual 
smoothing, and multi-grid. Implicit residual smoothing is 
just a mathematical step, applied at each stage of the explicit 
scheme, to extend the local stability range. The multigrid 
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method involves cycling through a sequence of successively 
coarser grids and relying upon effective high frequency 
damping for rapid removal of the errors in the 
solution. For effective high frequency damping 
licient JC(~) of the fourth-difference dissipation 
generally taken to be in the range from & to 8. 

line grid 
the coef- 
terms is 

VIII. APPLICATIONS 

Two airfoil flow problems are considered here to 
demonstrate the benefits of using a central-difference 
scheme with a matrix numerical dissipation model. The first 
problem concerns inviscid flow over an NACA 0012 airfoil. 
At a free-stream Mach number (M,) of 0.8 and angle of 

TABLE I 

Lift and Drag Coefficients for NACA 0012 Airfoil, 
M, = 0.8, LY = 1.25” 

Case Cl Cd 

Scalar dissipation model 
(224 x 32 mesh) 

Matrix dissipation model 
(224 x 32 mesh) 

Scalar dissipation model 
(640 x 64 mesh) 

0.3628 0.023 1 

0.3591 0.0227 

0.3577 0.0228 

Nofe. c,, lift coeffkient; cd, drag coefficient 
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FIG. 3. Central-difference scheme results for inviscid flow over NACA 0012 airfoil (M, = 0.80, a = 1.25”): (a) surface pressure coefficient and 
(b) convergence history. 
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attack (cx) of 1.25”, a fairly strong transonic shock wave 
occurs on the upper surface, while a much weaker one 
appears on the lower surface. On representative inviscid 
meshes, schemes based on central differencing capture the 
upper surface shock reasonably well, but they smear 
significantly the lower surface shock. The second problem 
involves transonic turbulent flow over an RAE 2822 airfoil. 
In this case the free-stream Mach number is 0.73, the angle 

-2.5 

-2.0 

-1.5 

a EXPERIMENT 
DISSIPATION 

- SCALAR 
---- MATRIX 

1.5L I I I I I I 
0 .2 .4 .6 .8 1.0 

of attack is 2.79”, and the Reynolds number based on chord 
(Re,) is 6.5 x 106. For such transonic viscous flows small 
differences in the shock strength can result in noticeable 
changes in the lift and drag of the airfoil. Thus, both of these 
problems can provide a reasonable measure of the perfor- 
mance of the artificial dissipation model, especially near 
shock waves. 

A C-type mesh consisting of 224 cells around the airfoil 

2( 10-J 
a EXPERIMENT 
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---- MATRIX 
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FIG. 4. Central-difference scheme results for turbulent flow over RAE 2822 airfoil (160 x 32 mesh, M, = 0.73, a = 2.79”, Re, = 6.5 x 106): (a) surface 
pressure coefficient, (b) upper surface skin-friction coefficient, and (c) convergence history. 
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FIG. 6. Central-difference scheme results for turbulent flow over RAE 2822 airfoil (320 x 64 mesh, M, = 0.73, a = 2.79”, Re, = 6.5 x 106): (a) surface 
pressure coefficient and (b) upper surface skin-friction coefficient. 

more accurate upwind biased form. The pressures are very 
close to those obtained with the matrix model. However, 
they do indicate a slightly higher flow acceleration just 
upstream of the shock wave. According to line mesh results, 
this is the correct behavior. There is good agreement 
between the upwind skin-friction solution and the 
experimental data upstream of the shock. The skin-friction 
distribution computed with the matrix model also exhibits 
good agreement with the data in this region. As is revealed 
shortly, this part of the solution remains unchanged with 
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mesh refinement. The skin-friction values of the upwind 
solution indicate a little larger separation region induced by 
the shock, which agrees fairly well with the matrix dissipa- 
tion results on the liner grids. It is important to note that on 
the coarse mesh neither the upwind nor matrix dissipation 
solution gives the correct skin-friction values over the last 
20% of the airfoil. This demonstrates the sensitivity of the 
solution to the shock position. 

Numerical results for the 320 x 64 mesh are presented in 
Fig. 6. A slightly stronger shock is predicted using the 
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FIG. 7. (a) Variation of lift coefficient with reciprocal of number of mesh points (RAE 2822 airfoil, M, = 0.73, a = 2.79”, Re, = 6.5 x 106). 
(b) Variation of total drag coefficient with reciprocal of number of mesh points (RAF! 2822 airfoil, M, = 0.73, a = 2.79”, Re, = 6.5 x 106). 
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matrix dissipation model. Otherwise, the solutions deter- 
mined with the different dissipation models are nearly the 
same. Even so one must keep in mind that small changes in 
shock location can have significant effects on aerodynamics. 
The character of the convergence behavior with the two 
models is about the same as for the coarse mesh. On the 
640 x 128 mesh, the application of the models gives 
essentially the same results. 

In Fig. 7 the variation of the computed lift and total drag 
coefficients with the reciprocal of the number of mesh cells 
is plotted for each dissipation model. The curves corre- 
sponding to the matrix model are nearly linear. A linear 
curve indicates second-order accuracy for the full range of 
meshes being considered. The numerical values for the com- 
ponents of the drag coefficient (form and friction contribu- 
tions) along with the lift coefficient (cr) are given for all the 
viscous computations in Table 11. All of the coarse mesh 
solutions give at least a four percent error in the c, relative 
to the finest mesh solution. Notice that the values obtained 
with the matrix model on the 320 x 64 grid are very close to 
those calculated with the scalar model on the 640 x 128 grid. 
Such a reduction in the mesh required for acceptable 
accuracy is highly desirable, especially for three-dimen- 
sional flow problems. Some applications to three-dimen- 
sional viscous flows are presented in Turkel and Vatsa [26]. 
It should be emphasized that accurate prediction of lift and 
drag is very important in the design of aircraft, and thus, a 
good estimate of these quantities for an infinitely fine mesh 
is needed. 

TABLE II 

Lift and Drag Coefficients for RAE 2822 Airfoil, 
M, = 0.73, CI = 2.79”, Re, = 6.5 x lo6 

Mesh Cl % Cdl cd,,, 

Scalar dissipation model 

160 x 32 0.8006 0.0127 0.0047 0.0174 
320 x 64 0.8372 0.0120 0.0055 0.0175 
640 x 128 0.8547 0.0123 0.0055 0.0178 

Matrix dissipation model 

160x32 0.8189 0.0122 0.0053 0.0175 
320 x 64 0.8497 0.0123 0.0055 0.0178 
640x 128 0.8599 0.0124 0.0055 0.0179 

Second-order upwind 

160x32 0.8176 0.0119 0.0054 0.0173 

“Third-order” upwind biased 

160x32 0.8220 0.0124 0.0054 0.0178 

Note. c,, lift coefficient; cd,, pressure drag coefftcient; cdl. friction drag 
coefficient; cd,,, , total drag coefftcient. 

In [27] it is shown that the TVD switch (6.4) allows 
converged solutions for hypersonic flow where the standard 
switch (2.9) does not. 

IX. CONCLUDING REMARKS 

We have thus shown that the second-difference artificial 
dissipation is equivalent to using a flux limiter, and hence, 
central-difference schemes are not any more “artificial” than 
upwind schemes. The central-difference scheme is slightly 
more dissipative for two reasons. First, Gi+ 1,2 = 
max( lc/i, $ i + 1 ), while for an upwind scheme $i + i is equal to 
either I,!J~ or $,+ i, depending on the direction of the wind. 
Second, we insist that $i be positive (i.e., ‘pi< 1) while 
upwind limiters allow (pi > 1 (i.e., in some cases we can have 
negative viscosity but still be TVD). However, to compen- 
sate for this slight increase in dissipation central-difference 
schemes are simpler to program and require less computer 
time per time step, and work well with multigrid accelera- 
tion techniques. 

In addition the central-difference schemes have a free 
parameter in conjunction with the fourth-difference dissipa- 
tion. This dissipation is needed to approach a steady state 
and has noting to do with TVD properties. In fact the 
fourth-difference contribution is set equal to zero near local 
extrema. For time-dependent flows one can set this dissipa- 
tion identically to zero. On the other hand TVD properties 
do not necessarily imply a rapid convergence to the steady 
state. 

In summary, a formulation for a numerical dissipation 
model that makes a central-difference scheme closely resem- 
ble an upwind scheme near flow discontinuities has been 
described. A theorem has been proven that gives sufficient 
requirements for this type of dissipation model to satisfy the 
TVD property for a scalar equation. Flux limiter functions 
have been presented for this form of dissipation model. For 
a system of equations a matrix-valued dissipation is intro- 
duced. Solutions of the Euler and Navier-Stokes equations 
for airfoil flows have been obtained using the matrix dissipa- 
tion model. These results have demonstrated noticeable 
improvements in accuracy in smooth regions of the flow 
field as well as near shock waves. There is a 15 % increase in 
computational time for explicit multistage schemes when 
this model is used. However, the improved accuracy has 
permitted a significant reduction in the number of mesh 
points required. Such behavior of a scheme can have 
a dramatic effect on the necessary mesh size for three- 
dimensional flow calculations. 

Finally, it is important to emphasize the different prin- 
cipal objectives associated with matrix-valued dissipation 
and the TVD switch. The purpose of the matrix form of the 
numerical dissipation model is to apply the appropriate 
scaling of the dissipation in each flow equation, yielding a 
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reduction in the amount of dissipation being introduced and 
improved accuracy. The TVD switch plays a somewhat 
opposite role in that it causes more dissipation to be added 
in order to prevent overshoots, and thus, allows con- 
vergence and provides robustness in solving high speed flow 
problems. The combination of the two should give more 
dissipation near shocks and less dissipation in smooth 
regions, hence giving better accuracy in all regions. 
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